Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 257: 114346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447259

RESUMO

BACKGROUND: Studies on cognitive and neurodevelopmental outcomes have shown inconsistent results regarding the association with prenatal exposure to perfluoroalkyl substance (PFAS) and organochlorines. Assessment of mixture effects of correlated chemical exposures that persist in later life may contribute to the unbiased evaluation and understanding of dose-response associations in real-life exposures. METHODS: For a subset of the 4th Flemish Environment and Health Study (FLEHS), concentrations of four PFAS and six organochlorines were measured in respectively 99 and 153-160 cord plasma samples and 15 years later in adolescents' peripheral serum by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Sustained and selective attention were measured at 14-15 years with the Continuous Performance Test (CPT) and Stroop Test as indicators of potential neurodevelopmental deficits. Quantile g-computation was applied to assess the joint associations between prenatal exposure to separate and combined groups of PFAS and organochlorines and performance in the CPT and Stroop Test at adolescence. Subsequently, individual effects of each chemical compound were analyzed in mixed effects models with two sets of covariates. Analytical data at birth and at the time of cognitive assessment allowed for off-setting postnatal exposure. RESULTS: In mixtures analysis, a simultaneous one-quantile increase in the natural log-transformed values of PFAS and organochlorines combined was associated with a decrease in the mean reaction time (RT) and the reaction time variability (RTV) in the CPT (ß = -15.54, 95% CI:-29.64, -1.45, and ß = -7.82, 95% CI: -14.97, -0.67 respectively) and for the mixture of PFAS alone with RT (ß = -11.94, 95% CI: -23.29, -0.60). In the single pollutant models, these results were confirmed for the association between perfluorohexanesulfonate (PFHxS) with RT (ß = -17.95, 95% CI = -33.35, -2.69) and hexachlorobenzene with RTV in the CPT (ß = -5.78, 95% CI: -10.39, -0.76). Furthermore, the participants with prenatal exposure above the limit of quantification for perfluorononanoic acid (PFNA) had a significantly shorter RT and RTV in the CPT (ß = -23.38, 95% CI: -41.55, -5.94, and ß = -9.54, 95% CI: -19.75, -0.43, respectively). CONCLUSION: Higher prenatal exposure to a PFAS mixture and a mixture of PFAS and organochlorines combined was associated with better sustained and selective attention during adolescence. The associations seemed to be driven by PFHxS and were not linked to exposure levels at the time of assessment.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Recém-Nascido , Humanos , Adolescente , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cognição
2.
Environ Pollut ; 346: 123465, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309423

RESUMO

The prevalence of childhood obesity is rapidly increasing. Therefore, gaining more information on the role of environmental parameters is key. With overexpression of leptin (encoded by LEP) in obesity, LEP methylation might be altered by environmental exposures. This study aims to assess effects of ambient air pollution and nearby greenness on obesity-related growth and LEP methylation in early childhood. We monitored 120 mother-child pairs from conception until the age of five. Buccal swabs and anthropometric measurements of the children were taken at six months, one year, and five years old. Buccal DNA was extracted to determine LEP methylation levels. Estimates of air pollution and nearby greenness were calculated using high-resolution models. Effects of air pollution and nearby greenness on growth or LEP methylation were investigated using linear mixed effects models. Positive associations were shown for air pollution between conception and age one on impedance in six-month-olds and one-year-olds in the crude model. PM with aerodynamic diameter ≤10 (PM10) and ≤2.5 µm (PM2.5) positively associated with waist-hip-ratio and waist circumference at age five in the fully adjusted model. In early childhood, closest distance to forest negatively, and urban green and forest positively associated with weight-for-length, body mass index, and fat percentage in five-year-olds in the fully adjusted model. No significant associations for noise, and walkability on growth were seen. Negative associations were shown for smaller green clusters and positive associations for greater green clusters on LEP methylation in one-year-olds. For forest distance, walkability, noise, or all green on LEP methylation, no significant associations were found. Evidence is provided that ambient air pollution might have a significant effect on impedance and waist-hip-ratio, suggesting an increased risk of childhood obesity. Based on LEP methylation, greater green clusters might associate with a decreased risk of childhood obesity, while smaller green clusters showed the opposite.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Obesidade Pediátrica , Criança , Humanos , Pré-Escolar , Leptina/genética , Poluição do Ar/análise , Exposição Ambiental/análise , Metilação , Poluentes Atmosféricos/análise , Material Particulado/análise
3.
Commun Biol ; 7(1): 66, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195839

RESUMO

Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.


Assuntos
Ordem de Nascimento , Metilação de DNA , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Epigênese Genética , Epigenômica
4.
Chemosphere ; 328: 138570, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019399

RESUMO

BACKGROUND AND AIM: Parabens are widely used as antimicrobial preservatives in personal care products. Studies investigating obesogenic or cardiovascular effects of parabens show discordant results, while data on preschool children are lacking. Paraben exposure during early childhood could have profound cardiometabolic effects later in life. METHODS: In this cross-sectional study paraben concentrations [methyl (MeP), ethyl (EtP), propyl (PrP), butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 300 urinary samples of 4-6-year-old children of the ENVIRONAGE birth cohort. Paraben values below the limit of quantitation (LOQ) were imputed by censored likelihood multiple imputation. The associations between log-transformed paraben values and cardiometabolic measurements (BMI z-scores, waist circumference, blood pressure and retinal microvasculature) were analyzed in multiple linear regression models with a priori selected covariates. Effect modification by sex was investigated by including interaction terms. RESULTS: Geometric means (geometric SD) of urinary MeP, EtP, and PrP levels above the LOQ were 32.60 (6.64), 1.26 (3.45), and 4.82 (4.11) µg/L, respectively. For BuP more than 96% of all measurements were below the LOQ. Regarding the microvasculature, we found direct associations between MeP and central retinal venular equivalent (ß = 1.23, p = 0.039) and PrP with the retinal tortuosity index (x103)(ß = 1.75, p = 0.0044). Furthermore, we identified inverse associations between MeP and ∑parabens with BMI z-scores (ß = -0.067, p = 0.015 and ß = -0.070, p = 0.014 respectively), and EtP with mean arterial pressure (ß = -0.69, p = 0.048). The direction of association between EtP and BMI z-scores showed evidence for sex-specific differences with a direct trend in boys (ß = 0.10, p = 0.060). CONCLUSIONS: Already at young age paraben exposure is associated with potentially adverse changes in the retinal microvasculature.


Assuntos
Doenças Cardiovasculares , Exposição Ambiental , Poluentes Ambientais , Parabenos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Doenças Cardiovasculares/urina , Estudos Transversais , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Parabenos/metabolismo
5.
Environ Res ; 216(Pt 4): 114828, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400229

RESUMO

BACKGROUND: DNA methylation programming is sensitive to prenatal life environmental influences, but the impact of maternal exposure to green space on newborns DNA methylation has not been studied yet. METHODS: We conducted a meta-epigenome-wide association study (EWAS) of maternal exposure to green space during gestation with cord blood DNA methylation in two subsets of the ENVIRONAGE cohort (N = 538). Cord blood DNA methylation was measured by Illumina HumanMethylation 450K in one subset (N = 189) and EPICarray in another (N = 349). High (vegetation height>3 m (m)), low (vegetation height<3 m) and total (including both) high-resolution green space exposures during pregnancy were estimated within 100 m and 1000 m distance around maternal residence. In each subset, we sought cytosine-phosphate-guanine (CpG) sites via linear mixed models adjusted on newborns' sex, ethnicity, gestational age, season at delivery, sampling day, maternal parity, age, smoking, education, and estimated blood cell proportions. EWASs results were meta-analysed via fixed-effects meta-analyses. Differentially methylated regions (DMRs) were identified via ENmix-combp and DMRcate algorithms. Sensitivity analyses were additionally adjusted on PM2.5, distance to major roads, urbanicity and neighborhood income. In the 450K subset, cord blood expression of differentially methylated genes was measured by Agilent microarrays and associated with green space. RESULTS: 147 DMRs were identified, 85 of which were still significant upon adjustment for PM2.5, distance to major roads, urbanicity and neighborhood income, including HLA-DRB5, RPTOR, KCNQ1DN, A1BG-AS1, HTR2A, ZNF274, COL11A1 and PRSS36 DMRs. One CpG reached genome-wide significance, while 54 CpGs were suggestive significant (p-values<1e-05). Among them, a CpG, hypermethylated with 100 m buffer total green space, was annotated to PAQR9, whose expression decreased with 1000 m buffer low green space (p-value = 1.45e-05). CONCLUSIONS: Our results demonstrate that maternal exposure to green space during pregnancy is associated with cord blood DNA methylation, mainly at loci organized in regions, in genes playing important roles in neurological development (e.g., HTR2A).


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Recém-Nascido , Epigenoma , Metilação de DNA , Sangue Fetal/metabolismo , Parques Recreativos , Efeitos Tardios da Exposição Pré-Natal/genética , Material Particulado/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Progesterona/metabolismo
6.
Front Public Health ; 11: 1333969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298262

RESUMO

Background/Aim: Human breast milk is the recommended source of nutrition for infants due to its complex composition and numerous benefits, including a decline in infection rates in childhood and a lower risk of obesity. Hence, it is crucial that environmental pollutants in human breast milk are minimized. Exposure to black carbon (BC) particles has adverse effects on health; therefore, this pilot study investigates the presence of these particles in human breast milk. Methods: BC particles from ambient exposure were measured in eight human breast milk samples using a white light generation under femtosecond illumination. The carbonaceous nature of the particles was confirmed with BC fingerprinting. Ambient air pollution exposures (PM2.5, PM10, and NO2) were estimated using a spatial interpolation model based on the maternal residential address. Spearman rank correlation coefficients were obtained to assess the association between human breast milk's BC load and ambient air pollution exposure. Results: BC particles were found in all human breast milk samples. BC loads in human breast milk were strongly and positively correlated with recent (i.e., 1 week) maternal residential NO2 (r = 0.79; p = 0.02) exposure and medium-term (i.e., 1 month) PM2.5 (r = 0.83; p = 0.02) and PM10 (r = 0.93; p = 0.002) exposure. Conclusion: For the first time, we showed the presence of BC particles in human breast milk and found a robust association with ambient air pollution concentrations. Our findings present a pioneering insight into a novel pathway through which combustion-derived air pollution particles can permeate the delicate system of infants.


Assuntos
Poluentes Atmosféricos , Lactente , Feminino , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Projetos Piloto , Leite Humano/química , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Carbono
7.
Front Genet ; 13: 934277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267401

RESUMO

Telomere length at birth determines later life telomere length and potentially predicts ageing-related diseases. However, the genetic and epigenetic settings of telomere length in newborns have not been analyzed. In addition, no study yet has reported how the interplay between genetic variants and genome-wide cytosine methylation explains the variation in early-life telomere length. In this study based on 281 mother-newborn pairs from the ENVIRONAGE birth cohort, telomere length and whole-genome DNA methylation were assessed in cord blood and 26 candidate single nucleotide polymorphism related to ageing or telomere length were genotyped. We identified three genetic variants associated with cord blood telomere length and 57 cis methylation quantitative trait loci (cis-mQTLs) of which 22 mQTLs confirmed previous findings and 35 were newly identified. Five SNPs were found to have significant indirect effects on cord blood telomere length via the mediating CpGs. The association between rs911874 (SOD2) and newborn telomere length was modified by nearby DNA methylation indicated by a significant statistical interaction. Our results suggest that DNA methylation in cis might have a mediation or modification effect on the genetic difference in newborn telomere length. This novel approach warrants future follow-up studies that are needed to further confirm and extend these findings.

8.
J Transl Med ; 20(1): 353, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945616

RESUMO

BACKGROUND: Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS: We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS: DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS: We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.


Assuntos
Metilação de DNA , Sangue Fetal , Envelhecimento/genética , Biomarcadores , Metilação de DNA/genética , DNA Mitocondrial/genética , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Gravidez
9.
Diabetes Care ; 45(3): 614-623, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104326

RESUMO

OBJECTIVE: Maternal glycemic dysregulation during pregnancy increases the risk of adverse health outcomes in her offspring, a risk thought to be linearly related to maternal hyperglycemia. It is hypothesized that changes in offspring DNA methylation (DNAm) underline these associations. RESEARCH DESIGN AND METHODS: To address this hypothesis, we conducted fixed-effects meta-analyses of epigenome-wide association study (EWAS) results from eight birth cohorts investigating relationships between cord blood DNAm and fetal exposure to maternal glucose (Nmaximum = 3,503), insulin (Nmaximum = 2,062), and area under the curve of glucose (AUCgluc) following oral glucose tolerance tests (Nmaximum = 1,505). We performed lookup analyses for identified cytosine-guanine dinucleotides (CpGs) in independent observational cohorts to examine associations between DNAm and cardiometabolic traits as well as tissue-specific gene expression. RESULTS: Greater maternal AUCgluc was associated with lower cord blood DNAm at neighboring CpGs cg26974062 (ß [SE] -0.013 [2.1 × 10-3], P value corrected for false discovery rate [PFDR] = 5.1 × 10-3) and cg02988288 (ß [SE]-0.013 [2.3 × 10-3], PFDR = 0.031) in TXNIP. These associations were attenuated in women with GDM. Lower blood DNAm at these two CpGs near TXNIP was associated with multiple metabolic traits later in life, including type 2 diabetes. TXNIP DNAm in liver biopsies was associated with hepatic expression of TXNIP. We observed little evidence of associations between either maternal glucose or insulin and cord blood DNAm. CONCLUSIONS: Maternal hyperglycemia, as reflected by AUCgluc, was associated with lower cord blood DNAm at TXNIP. Associations between DNAm at these CpGs and metabolic traits in subsequent lookup analyses suggest that these may be candidate loci to investigate in future causal and mediation analyses.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Epigênese Genética , Epigenoma , Feminino , Sangue Fetal/metabolismo , Humanos , Recém-Nascido , Gravidez
10.
Environ Int ; 157: 106845, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474324

RESUMO

BACKGROUND: Parabens are used as antimicrobial preservatives in personal care products. Few studies have dealt with adverse health outcomes, transplacental transfer, and obesogenic effects of prenatal exposure to parabens. We examined the association between placental paraben levels and cord blood metabolic biomarkers, considering modulating effects of maternal pre-pregnancy BMI and underlying epigenetic mechanisms, and investigated longitudinal effects of in utero paraben exposure on early childhood trajectories of BMI z-scores. METHODS: Placental concentrations of four parabens [methyl (MeP), ethyl (EtP), propyl (PrP), and butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 229 placentas of the ENVIRONAGE birth cohort. The association with cord blood metabolic biomarkers [glucose, insulin, γ-glutamyltransferase (GGT), high-density and low-density lipoprotein (HDL and LDL)] was analyzed in multiple regression models with two different sets of, a priori selected potential confounders, additionally stratified for different maternal BMI groups and assessed by causal mediation analysis. The association between placental paraben concentration and differential DNA methylation of CpGs annotated to GGT and longitudinal measurements of BMI z-scores were investigated with adjusted linear mixed models. RESULTS: The geometric means of placental MeP, EtP, PrP, and BuP levels above the limit of detection (LOD) were 4.42, 1.32, 1.51, and 0.35 ng/g respectively, with only EtP showing sufficient (88%) measurements above LOD for further analyses. An interquartile ratio (IQR) increase in placental EtP was associated with an increase of 12.61 % (95% CI: 1.80 24.57) in the geometric mean of cord GGT activity, and with a decrease of -3.64 % (95% CI: -6.80 to -0.39) in the geometric mean of cord glucose. Placental EtP levels were significantly associated with hypermethylation of cg08612779 annotated to GGT7 after correcting for multiple testing (ß = 0.0017, p = 0.049). An interquartile ratio (IQR) increment in placental EtP was associated with a decrease in longitudinal BMI z-score of 0.27 points (95% CI: -0.46 to -0.088). CONCLUSION: Prenatal EtP exposure may affect early childhood BMI. The association of placental EtP with cord blood GGT and glucose levels provides a starting point for further research on mechanisms of paraben-related metabolic processes in utero.


Assuntos
Sangue Fetal , Parabenos , Biomarcadores , Índice de Massa Corporal , Pré-Escolar , Feminino , Humanos , Parabenos/efeitos adversos , Placenta , Gravidez
11.
Front Genet ; 10: 325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031804

RESUMO

Mitochondrial dysfunction seems to play a key role in the etiology of insulin resistance. At birth, a link has already been established between mitochondrial DNA (mtDNA) content and insulin levels in cord blood. In this study, we explore shared epigenetic mechanisms of the association between mtDNA content and insulin levels, supporting the developmental origins of this link. First, the association between cord blood insulin and mtDNA content in 882 newborns of the ENVIRONAGE birth cohort was assessed. Cord blood mtDNA content was established via qPCR, while cord blood levels of insulin were determined using electrochemiluminescence immunoassays. Then the cord blood DNA methylome and transcriptome were determined in 179 newborns, using the human 450K methylation Illumina and Agilent Whole Human Genome 8 × 60 K microarrays, respectively. Subsequently, we performed an epigenome-wide association study (EWAS) adjusted for different maternal and neonatal variables. Afterward, we focused on the 20 strongest associations based on p-values to assign transcriptomic correlates and allocate corresponding pathways employing the R packages ReactomePA and RDAVIDWebService. On the regional level, we examined differential methylation using the DMRcate and Bumphunter packages in R. Cord blood mtDNA content and insulin were significantly correlated (r = 0.074, p = 0.028), still showing a trend after additional adjustment for maternal and neonatal variables (p = 0.062). We found an overlap of 33 pathways which were in common between the association with cord blood mtDNA content and insulin levels, including pathways of neurodevelopment, histone modification, cytochromes P450 (CYP)-metabolism, and biological aging. We further identified a DMR annotated to Repulsive Guidance Molecule BMP Co-Receptor A (RGMA) linked to cord blood insulin as well as mtDNA content. Metabolic variation in early life represented by neonatal insulin levels and mtDNA content might reflect or accommodate alterations in neurodevelopment, histone modification, CYP-metabolism, and aging, indicating etiological origins in epigenetic programming. Variation in metabolic hormones at birth, reflected by molecular changes, might via these alterations predispose children to metabolic diseases later in life. The results of this study may provide important markers for following targeted studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...